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TTK : The Topology ToolKit



The Topology Toolkit (TTK)

A Topological Data Analysis software library
- http://topology-tool-kit.github.io
- open-source, BSD license
- ~160k lines of C++, 75k commits

- several APIs
-+ C++, VTK C++, VTK Python & ParaView Python

- ~15 academic contributor

- Ubuntu packages & Windows installers

- TTK c ParaView official binaries! (since 2021)

Julien Tierny et al. “The Topology ToolKit". In: IEEE Transactions on Visualization and
Computer Graphics (Proc. of IEEE VIS) (2017), Talha Bin Masood et al. “An Overview of
the Topology ToolKit”. In: TopolnVis. 2019
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http://topology-tool-kit.github.io

The ParaView/VTK ecosystem

\V/ﬂ’\( JI ParaView A cMake { kitware

VTK Visualization ToolKit, a C++ software library
ParaView Scientific Data Visualization application (C++/Qt)
CMake Build system (mainly for C++ software)
Kitware, Inc. N.Y-based software company with a strong
commitment on open-source software

How to use ParaView

- Several types of views are proposed: RenderView,
SpreadsheetView...

- Filters are applied on data, creating a pipeline
- Pipelines can be saved as Python scripts
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TTK: a ParaView plugin




TTK Gallery / ttk-data

A collection of ParaView state files available on GitHub.
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https://github.com/topology-tool-kit/ttk-data
https://topology-tool-kit.github.io/gallery.html

@ 17K The Topology ToolKit
® Topological Data Analysis: Key Concepts

© DiscreteMorseSandwich

O T1DA Applications
© software Engineering Work

® Conclusion
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Topological Data Analysis: Key
Concepts

A Basic Definition



Topological Data Analysis (TDA)

© Jules Vidal, « A Progressive Approach to Scalar Field Topology »

- studies scalar fields defined on a domain
- regular grid, mesh...

- detects, measures & extracts topological features
- peaks, valleys, cavities, cycles, noise...

- generates lightweight signatures used as proxies

- persistence diagrams, merge trees... e



On meshes

- A mesh = a set of polygons (2D) or polyhedron (3D)

- Usually 2D (squares or triangles) or 3D (cubes or tetrahedra).

- Basic topology: finding the connected components
Non-manifold meshes

- Some meshes are more regular than others

- In 2D, a manifold mesh = an edge must link
either 1 or 2 squares/triangles

Complexes
- Ensemblist extension of a mesh
- If a cell € complex, then all its faces € complex

- Cubic complexes, simplicial complexes
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Example Data-Sets: Toy example

- 2D regular grid, 100 x 100
- —1x Sum of 3 gaussians

- Lower values, Higher values
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Example Data-Sets: Molecular Simulation

- 3D regular grid (177 x 95 x 48)

- Molecular bond between Adenine & Thymine (DNA nucleobases)
- Simulation of the electronic density probability (—log())

- Lower values — noyaux, Higher values on the boundary

Contour
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Example Data-Sets: Molecular Simulation

- 3D regular grid (177 x 95 x 48)

- Molecular bond between Adenine & Thymine (DNA nucleobases)
- Simulation of the electronic density probability (—log())

- Lower values — noyaux, Higher values on the boundary

Slice
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Topological Data Analysis: Key
Concepts

Critical Points



Critical Points

- Minima, maxima, saddle points

- Local characterization : counting the number of connected
components in the lower/upper link

- 3D: 1-saddles & 2-saddles
- Behavior near the boundary?

minimum maximum saddle point regular point

PPy

© Jules Vidal, « A Progressive Approach to Scalar Field Topology »
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Critical Points

- Minima, maxima, saddle points

- Local characterization : counting the number of connected
components in the lower/upper link

- 3D: 1-saddles & 2-saddles

- Behavior near the boundary?

Minima, saddle points 11/49



Critical Points: Global Semantics & Topological Features

Tracking the connectivity of the sub-level sets
Minimum Birth of a connected component

Saddle Death of a connected component
or Birth of a cycle / cavity

Maximum Death of a cycle / cavity

Elder Rule

- The youngest topological feature dies (or emerges) in favor of
the oldest
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Topological Data Analysis: Key
Concepts

Persistence Diagrams



Persistence Diagrams

- (Exclusive) Pairs of critical points
- A pair = one topological feature
- min-saddle pairs (Do (f)): connected components
- saddle-max pairs (Dy_+(f)): cavities
- saddle-saddle pairs (D:(f)): cycles
- Pair height = persistence of the feature
- Lightweight & stable representation
- noisy feature have a small persistence
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Application: Topological Simplification

With a given noisy scalar field:

1. the Persistence Diagram is computed

2. the persistence pairs under a given threshold are removed

3. a new scalar field is generated, corresponding to the simplified
topology (levelling)

Julien Tierny and Valerio Pascucci. “Generalized Topological Simplification of Scalar Fields on
Surfaces”. In: IEEE Transactions on Visualization and Computer Graphics (Dec. 2012). URL:
https://hal.archives-ouvertes.fr/hal-01206877, Jonas Lukasczyk et al. “Localized
Topological Simplification of Scalar Data”. In: IEEE Transactions on Visualization and Computer

Graphics (Oct. 2020). URL: https://hal.archives-ouvertes.fr/hal-02949278 e


https://hal.archives-ouvertes.fr/hal-01206877
https://hal.archives-ouvertes.fr/hal-02949278

Topological Data Analysis: Key
Concepts

Discrete Gradient & Morse-Smale
Complex



Discrete Gradient

In a (cubic, simplicial) complex, pair each cell with

- either one of its faces,

- either one of its co-faces, (vertex —s edge towards the lowest neighbor)
- orit's a critical cell (its highest vertex is a critical point)

Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. “Theory and Algorithms for Constructing
Discrete Morse Complexes from Grayscale Digital Images”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 33.8 (2011), pp. 1646-1658. DOI: 10.1109/TPAMI.2011.95
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https://doi.org/10.1109/TPAMI.2011.95

Discrete Gradient
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- orit's a critical cell (its highest vertex is a critical point)
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Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles

Descending 1-separatrices
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Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles

Ascending 1-separatricess
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Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles

Ascending + descending 1-separatrices
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Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles
descending segmentation zone of influence of every minimum

Descending segmentation
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Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles
descending segmentation zone of influence of every minimum
ascending segmentation zone of influence of every maximum

Ascending segmentation ols



Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles
descending segmentation zone of influence of every minimum
ascending segmentation zone of influence of every maximum
Morse-Smale segmentation ascending ® descending segmentation

Morse-Smale segmentation ols



Morse-Smale Complex

critical cells from the Discrete Gradient
descending 1-separatrices follow the gradient downstream from the 1-saddles
ascending 1-separatrices follow gradient upstream from the (D-1)-saddles
descending segmentation zone of influence of every minimum
ascending segmentation zone of influence of every maximum
Morse-Smale segmentation ascending ® descending segmentation
2-separatrices (3D) boundary surfaces of each zone of influence

Ascending + descending 2-separatrices 16/49



Topological Data Analysis: Key
Concepts

Topology of High-Dimension Data-Sets



Topology of High-Dimension Data-Sets

High-Dimension Point Cloud
(p points in R")

? Metric Space
(p objects)
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Topology of High-Dimension Data-Sets
High-Dimension Point Cloud
(p points in R") < : >\

? Metric Space
(p objects)

Distance Matrix
Mp(R)

? metric
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Topology of High-Dimension Data-Sets
High-Dimension Point Cloud
(p points in R") < : >\

? Metric Space
(p objects)

Distance Matrix
Mp(R)

Dimension
Reduction

2D/3D Embedding
(p points in R?/R3)

? metric
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Topology of High-Dimension Data-Sets
High-Dimension Point Cloud
(p points in R") < : >\

? Metric Space
(p objects)

Distance Matrix
Mp(R)

Dimension
Reduction

2D/3D Embedding
(p points in R?/R3)

? metric

Rips Complex
(triangulation)
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Rips Complex (2022)

aor W N o

o

Generate a triangulation from a Distance Matrix

Algorithm 1: Find all (d+1)-uplets whose pairwise distance is < e
Input: d — Max simplex dimension

Input: e — Max diameter

Input: Mat — Distance matrix

Input: £ — 2D/3D Embedding

Output: Tr — Triangulation on embedding

Tr < 0;
foreach (d + 1)-uplet (po, .., py) do
if vi,j € [0..d]Mat(p;, pj) < e then
| Tr < Tru d-simplex from (E(po), .., E(pa));
end if
end foreach
return Tr;
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[llustration: Periodic Picture
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DiscreteMorseSandwich

Fast computation of Persistence
Diagrams (2021 - 2023)



Computing Persistence Diagrams from the Discrete Gradient

Discrete Morse Sandwich:
Fast Computation of Persistence Diagrams for
Scalar Data — An Algorithm and A Benchmark

Pierre Guillou, Jules Vidal, and Julien Tierny

Abstract—This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar
fleld f defined on a d-dimensional simpliial complex &, with d < 3. Our work revisis the seminal aigorithm “PairSimpiices” [3

with discrete Morse theory (DMT) , which greatly reduces lhe num ut simplices to consider. Further, we also extend to
DMT and | the stratification strategy described in “Pai for the fast computatien of the 0 and (d — 1)*"
diagrams, noted Dy (f) and D1 (f). Minima-saddle persistence pairs (Dq( d saddle-maximum persistence pairs (D 1(f)) are
efficiently computed by processing, with a Union-Find, the unstable sets of 1-saddles and the stable sets of (d — 1)-saddles. We
provide a detailed description of the (optional) handling of the boundary component of % when processing (d — 1)-saddles. This fast
pre-computatien for the dimensions 0 and (d — 1) enables an aggressive specialization of Iu the 3D case, which results in a drastic
reduction of the number of input simplices for the computation of Dy { f), the intermediate layer of the sandwich. Finally, we document
several performance improvements via shared-memory parallelism. We provide an cpen-source implementation of our algorithm for
reproducibility purposes. We also contribute a reproducible benchmark package, which exploits three-dimensional data from a public
repository and compares our algorithm to a variety of publicly available implementations. Extensive experiments indicate that our
algorithm improves by two orders of magnitude the fime performance of the seminal "PairSimplices” algorithm it extends. Moreover, it
also improves memory footprint and time performance over a selection of 14 competing approaches, with a substantial gain over the
fastest available approaches, while producing a strictly identical output. We illustrate the utility of our contributions with an application to
the tast and robust extraction of persistent 1-dimensional generators on surfaces, volume data and high-dimensional point clouds.

Index Terms—Topological data analysis, scalar data, persistence diagrams, discrete Morse theory.

Now the default Persistence Diagram algorithm in TTK!
20/49
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https://arxiv.org/abs/2206.13932
https://www.youtube.com/watch?v=4NI9lxzWka4&t=3968s

DiscreteMorseSandwich: Key ideas

- Use the Discrete Gradient to detect critical cells;

- Detect first the min-saddle and saddle-max pairs
- less saddles to consider for the saddle-saddle pairs

- Boundary expansions following the Discrete Gradient
- Specific accelerations for the min-saddle and the saddle-max pairs
- Counterintuitive behavior on non-manifold surfaces!

(of; 50%

el

C.)
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A Benchmark

Implementation Ref. Category Language  Parallelism  Distance
DiscreteMorseSandwich [9] Discrete Morse Theory C++ Controllable 0.0
PairSimplices [7,25] Explicit Propagation C++ No 0.0
TTK-FTM [8] Merge-Tree (2D) C++ Controllable  122.5 x 10°
PersistenceCycles [11] Discrete Morse Theory C++ Controllable  97.5 x 103
Dionysus?2 [15] Boundary Matrix C++ No 0.0
DIPHA [2] Boundary Matrix C++ Controllable 0.0
Eirene,jl [10] Boundary Matrix Julia No 9.0 x10°
Gudhi [14] Boundary Matrix C++ Observed  15.3 x 10°
Javaplex [19] Boundary Matrix Java Observed 0.0
PHAT (Spectral Seq.) [3] Boundary Matrix C++ Controllable  466.6 x 10°
Ripser.py [1,22] Boundary Matrix C++ No NA
CubicalRipser [12] Boundary Matrix Cr+ No NA
Oineus [17] Boundary Matrix C++ Controllable NA
Perseus [16] Discrete Morse Theory C++ No NA
Diamorse [5] Discrete Morse Theory C++ No NA

~ 15 implementations x 36 datasets x{1D, 2D, 3D} x
{regular, explicit} x {sequential, parallel}
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—_— DMS —_— Dipha —— Gudhi —TTK-FTM
PersistenceCycles —— PHAT (Spectral Seq.) === JavaPlex

Computation speed (simplices/second)

| | | | | ; ;
0 200 400 600 800 1,000 0 2 4 6 8 0 0.5 1 1.5 2
[Do(f)] (1D datasets) [Do(f)| + ID:(f)| (2D datasets) .10° [Do(F)] + [D1(f)| + |D2(f)| (3D datasets)

Parallel results (desktop computer): we are better!
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By-products: Cycle Generators

Expanded 2-saddles boundaries — cycle generators
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TDA Applications

Ensembles Analysis (2019 - 2022)



VESTEC

- European-funded research Project
- 9 academic & industrial partners (inc. Sorbonne Université)
- To build methods, infrastructure & interfaces
for Urgent Decision-Making

- Using ensemble simulations on HPC clusters
- Using visualization software

- ParaView, CosmoScout VR
- 3 Use-Cases

1. Forest Fire (Tecnosylva, Spain)

2. Mosquito-Borne Diseases (FBK, Italy)

3. Space Weather (KTH, Sweden)

2449


https://github.com/cosmoscout

TTK Tools for Ensemble Analysis

Jules Vidal, Joseph Budin, and Julien Tierny. “Progressive Wasserstein Barycenters of
Persistence Diagrams”. In: IEEE Transactions on Visualization and Computer Graphics

(Oct. 2019). Accepted to IEEE Transactions on Visualization and Computer Graphics

(Proc. of IEEE VIS 2019). URL:

https://hal.archives-ouvertes.fr/hal-02179674 25/49


https://hal.archives-ouvertes.fr/hal-02179674

TTK’s Role in VESTEC

Analyze ensemble simulations

1. Generate persistence diagrams at every simulation cycle

2. At the end of the simulation, compute a distance matrix from all
the diagrams

3. Use Dimension Reduction to reduce the distance matrix to a
point cloud

4. Visualize & manipulate the results with ParaView
5. (Opt.) Cluster the persistence diagrams
6. (Opt.) Generate a Rips Complex to extract topological features
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VESTEC Use-Case 3: Space Weather

- Particle-In-Cell simulator developed at KTH (Stockholm)

- Magnetic (vector) field in the Earth magnetosphere

- What's important: magnetic reconnection (instability
phenomenon)

- One persistence diagram on the magnitude of the magnetic field
x 2500 cycles x 4 simulations

Four simulations, same cycle, different input parameters

27/49



Simulation Results after Dimension Reduction

Color:
simulation cycle simulation parameters
(0 to 2500) (4 simulations)




Data-set Manipulation & Extraction




TDA Applications

Surface Quadrangulation (2019)



Surface Quadrangulation using the Morse-Smale Complex

e,




From a triangular, closed surface

Shen Dong et al. “Spectral Surface Quadrangulation”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 1057-1066. 1SSN: 0730-0301. DOI: 10.1145/1141911.1141993. URL:
https://doi.org/10.1145/1141911.1141993

31/49


https://doi.org/10.1145/1141911.1141993
https://doi.org/10.1145/1141911.1141993

From a triangular, closed surface

1. we generate a scalar field that
alternates the critical points on the surface

Shen Dong et al. “Spectral Surface Quadrangulation”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 1057-1066. 1SSN: 0730-0301. DOI: 10.1145/1141911.1141993. URL:
https://doi.org/10.1145/1141911.1141993
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From a triangular, closed surface

1. we generate a scalar field that
alternates the critical points on the surface

2. we compute the Morse-Smale Complex

Shen Dong et al. “Spectral Surface Quadrangulation”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 1057-1066. 1SSN: 0730-0301. DOI: 10.1145/1141911.1141993. URL:
https://doi.org/10.1145/1141911.1141993
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From a triangular, closed surface
1. we generate a scalar field that
alternates the critical points on the surface
2. we compute the Morse-Smale Complex

3. coarse quadrangulation around
the saddle points (4 neighbors)

Shen Dong et al. “Spectral Surface Quadrangulation”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 1057-1066. 1SSN: 0730-0301. DOI: 10.1145/1141911.1141993. URL:
https://doi.org/10.1145/1141911.1141993
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From a triangular, closed surface

1. we generate a scalar field that
alternates the critical points on the surface

2. we compute the Morse-Smale Complex

3. coarse quadrangulation around
the saddle points (4 neighbors)

4. subdivision then
projection/relaxation iterations
to refine the quadrangulation

Shen Dong et al. “Spectral Surface Quadrangulation”. In: ACM Trans. Graph. 25.3 (July
2006), pp. 1057-1066. 1SSN: 0730-0301. DOI: 10.1145/1141911.1141993. URL:
https://doi.org/10.1145/1141911.1141993
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Input Scalar Field

One eigenfunction of the triangulation laplacian

- Triangulation edges — adjacency relationship between vertices
- Laplacian matrix = Degree matrix — Adjacency matrix

- Use spectralib to get the eigenvectors associated with the
highest eigenvalues (magnitude)

- An eigenvector = a value per vertex = a scalar field

- Minima & maxima are well distributed on the input domain
- Eigenvalue magnitude \, #critical points *
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https://spectralib.org/

TDA Applications

Image Segmentation



Image Segmentation using the Morse-Smale Complex




From a PNG image
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From a PNG image

1. ParaView computes the gradient
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From a PNG image

1. ParaView computes the gradient

2. topological Simplification
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From a PNG image

1. ParaView computes the gradient
2. topological Simplification
3. Morse-Smale Complex

- the minima are the markers
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From a PNG image

1. ParaView computes the gradient
2. topological Simplification
3. Morse-Smale Complex

- the minima are the markers
- the ascending separatrices
are the boundaries
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From a PNG image

1. ParaView computes the gradient
2. topological Simplification
3. Morse-Smale Complex
- the minima are the markers
- the ascending separatrices
are the boundaries
- the minima basins
form the segmentation
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Software Engineering Work

Progressive Persistence Diagrams (2020)



&l

N 2,003 N 14,625 N [ 106,800 N |8e7,120 b

TI| 283 T 4627 11| 50,882 171 546,847

wo| o 87% w| e9% w| s3x wol 33% |
t=10.02s. (8%) t=0.02s (8%) t=0.03s (12.5%) t=0.04s. (17%) t=0.08s. (33%) t=0.24s. (100%)

Jules Vidal, Pierre Guillou, and Julien Tierny. “A Progressive Approach to Scalar Field
Topology”. In: IEEE Transactions on Visualization and Computer Graphics 27.6 (June
2021), pp. 2833-2850. ISSN: 2160-9306. pOl: 10.1109/tvcg.2021.3060500. URL:
http://dx.doi.org/10.1109/TVCG.2021.3060500

Contributions: performance, timer, restart



https://doi.org/10.1109/tvcg.2021.3060500
http://dx.doi.org/10.1109/TVCG.2021.3060500

Software Engineering Work

MPI support in TTK’s Triangulation (2022)



MPI support in TTK’s triangulation (2022)

ParaView auto distributes regular grids with MPI

Eve Le Guillou: on-going PhD thesis to distribute TTK algorithms
- first, the internal data structures (Triangulation) v/
- then, ScalarFieldSmoother, DiscreteGradient v/
- finally, DiscreteMorseSandwich...

Triangulation work
- local <+ global simplex identifiers

- regular grids: use a per-process virtual representation of the
global grid

- explicit triangulations: enumerate edges & triangles inside
contiguous (global) ranges of tetrahedra
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Software Engineering Work

Performance & Quality Improvements



Performance Improvements

Morse-Smale Complex OpenMP

- Rework the (map-reduce) parallelism for the 2-Separatrices
- Speedup: x4 (GitHub PR)

Explicit Triangulation data structures

- all relationships between simplices are stored explicitly
- ex: edges per triangle — std: :vector<std::vector<int>>
- std::vector<std::vector<int>> used everywhere
- non-cache friendly, lots of allocations/deallocations
- replace with std::vector<std: :array<int, N>>
- one contiguous cache-friendly memory block
- ex: edges per triangle — std: :vector<std::array<int, 3>>
- Discrete Gradient speedups from +30% to +90% (GitHub PR)
- something similar can be done to the non-fixed relationships

- ex: number of neighbors per vertex
37/49


https://github.com/topology-tool-kit/ttk/pull/387
https://github.com/topology-tool-kit/ttk/pull/584

Code Quality Improvements

GitHub Actions workflows

- first, for generating binary packages

- Ubuntu .deb
- Windows installers

- then, to test the build at each PR (Ubuntu, macOS, Windows)
- with ccache/sccache to cache the build artifacts

- then, to test the state files from ttk-data

- use tools to maintain a high-quality source code

- clang-format makes the code uniformly readable

- clang-check quickly checks if the code compiles in a variety of
configurations (MPI, OpenMP, Debug vs Release)

- clang-tidy enforces more complex rules (static analysis)

38/49


https://topology-tool-kit.github.io/gallery.html

Conclusion




Conclusion

TTK (and TDA in general) provides useful tools to help understanding
scalar field on meshes

- Topology-preserving reduced representations
- persistence diagrams
- Statistical analyses on these reduced representations
- distance, clustering, dimension reduction
- Easy manipulations & visualizations
- ParaView integration
- Various applications
- ensemble analysis, quadrangulation, image segmentation...
- Great performance & code quality
- hopefully it remains the same after my departure...
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Other topological abstractions

- Merge trees “augmented” persistence diagrams with parent
relationships between pairs: distance, clustering, geodesics

On-going work
- Distribution (MPI) of the algorithms

- Include Machine-Learning methods in our pipelines

Morse-Smale Embedded Join tree
separatrices persistence diagram (Merge tree) 40/49
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