Une introduction à l'analyse topologique de données avec TTK

Pierre Guillou Fontainebleau, 18 octobre 2021

CNRS & Sorbonne Université

ERC-2019-COG TORI (ref. 863464, https://erc-tori.github.io)

TTK : The Topology ToolKit

The Topology Toolkit (TTK)

Une bibliothèque pour l'analyse topologique de données

- http://topology-tool-kit.github.io
- open-source, licence BSD
- ~125k lignes de C++, 5k commits
- ParaView, APIs : VTK C++, Python, C++
- 16 institutions contributrices
- paquets Ubuntu & installateurs Windows
- érosion, dilatation, ouverture, fermeture
- v1.0 imminente!
- TTK \subset ParaView 5.10!

Julien TIERNY et al. « The Topology ToolKit ». In : IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS) (2017). https://topology-tool-kit.github.io/, Talha BIN MASOOD et al. « An Overview of the Topology ToolKit ». In : TopolnVis. 2019

TTK \heartsuit ParaView

- 2 Introduction à l'analyse topologique de données
- **3** Application : analyse d'ensembles
- 4 Application : quadrangulation de surface
- **5** Application : segmentation d'image

6 Conclusion

Introduction à l'analyse topologique de données

Analyse topologique de données (TDA)

© Jules Vidal, « A Progressive Approach to Scalar Field Topology »

- champs scalaires définis sur des maillages (grilles régulières ou non structurées)
- · caractéristiques topologiques : pics, vallées, cycles, bruit
- génération de signatures légères pour la réduction de données
 - · diagrammes de persistance, arbres de contour, ...

Jeu de données d'exemple

- liaison moléculaire adénine-thymine (bases A & T de l'ADN)
- simulation de densité de probabilité de présence électronique (-log())
- \cdot valeurs faibles \longrightarrow noyaux, valeur fortes à l'infini
- grille régulière (177 \times 95 \times 48)

Ensemble de niveau

Jeu de données d'exemple

- liaison moléculaire adénine-thymine (bases A & T de l'ADN)
- simulation de densité de probabilité de présence électronique (-log())
- \cdot valeurs faibles \longrightarrow noyaux, valeur fortes à l'infini
- grille régulière (177 \times 95 \times 48)

Tranche selon Z (bleu ↗ rouge)

Points critiques

- minima, maxima, points selle
- caractérisation locale : composantes connexes des liens supérieur & inférieur

Points critiques

- minima, maxima, points selle
- caractérisation locale : composantes connexes des liens supérieur & inférieur
- · liés au changement de topologie des sous-ensembles de niveau

Minima, points selle, maxima

Diagrammes de persistance

- paires de points critiques (min-selle, selle-max)
- une paire = une caractéristique topologique
- calculé par Lower Star Filtration

Diagrammes de persistance

- paires de points critiques (min-selle, selle-max)
- une paire = une caractéristique topologique
- calculé par Lower Star Filtration
- représentation stable (filtrage par persistance) & légère

Application : Simplification Topologique

À partir d'un champ scalaire donné :

- 1. on calcule le diagramme de persistance
- 2. on enlève les paires qui ont la plus petite persistance
- 3. on génère un nouveau champ scalaire "nettoyé" qui correspond
 - à la topologie simplifiée (nivellement)

Julien TIERNY et Valerio PASCUCCI. « Generalized Topological Simplification of Scalar Fields on Surfaces ». In : IEEE Transactions on Visualization and Computer Graphics (déc. 2012). URL : https://hal.archives-ouvertes.fr/hal-01206877, Jonas Lukasczyk et al. « Localized Topological Simplification of Scalar Data ». In : IEEE Transactions on Visualization and Computer Graphics (oct. 2020). URL : https://hal.archives-ouvertes.fr/hal-02949278

Gradient discret

Dans un complexe (cubique, simplicial), chaque cellule est appairée

- soit avec une de ses faces
- soit avec une de ses co-faces (sommet \longrightarrow arête du plus bas voisin)
- sinon c'est une cellule critique (le plus haut sommet est critique)

Vanessa ROBINS, Peter John Wood et Adrian P. SHEPPARD. « Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images ». In : IEEE Transactions on Pattern Analysis and Machine Intelligence 33.8 (2011), p. 1646-1658. DOI : 10.1109/TPAMI.2011.95

Gradient discret

Dans un complexe (cubique, simplicial), chaque cellule est appairée

- soit avec une de ses faces
- + soit avec une de ses co-faces (sommet \longrightarrow arête du plus bas voisin)
- sinon c'est une cellule critique (le plus haut sommet est critique)

Vanessa ROBINS, Peter John Wood et Adrian P. SHEPPARD. « Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images ». In : IEEE Transactions on Pattern Analysis and Machine Intelligence 33.8 (2011), p. 1646-1658. DOI : 10.1109/TPAMI.2011.95

1-séparatrices descendantes suivre le gradient depuis les selles

1-séparatrices descendantes

cellules critiques du gradient discret 1-séparatrices descendantes suivre le gradient depuis les selles

1-séparatrices ascendantes remonter le gradient depuis les selles

1-séparatrices ascendantes

cellules critiques du gradient discret **1-séparatrices descendantes** suivre le gradient depuis les selles

1-séparatrices ascendantes remonter le gradient depuis les selles

1-séparatrices ascendantes + descendantes

1-séparatrices descendantes suivre le gradient depuis les selles
1-séparatrices ascendantes remonter le gradient depuis les selles segmentation descendante zone d'influence de chaque minimum

Segmentation descendante

1-séparatrices descendantes suivre le gradient depuis les selles
1-séparatrices ascendantes remonter le gradient depuis les selles segmentation descendante zone d'influence de chaque minimum segmentation ascendante zone d'influence de chaque maximum

Segmentation ascendante

1-séparatrices descendantes suivre le gradient depuis les selles
1-séparatrices ascendantes remonter le gradient depuis les selles segmentation descendante zone d'influence de chaque minimum segmentation ascendante zone d'influence de chaque maximum

Segmentation ascendante \otimes descendante

1-séparatrices descendantes suivre le gradient depuis les selles
1-séparatrices ascendantes remonter le gradient depuis les selles segmentation descendante zone d'influence de chaque minimum segmentation ascendante zone d'influence de chaque maximum
2-séparatrices (3D) surfaces frontières des zones d'influence

2-séparatrices ascendantes + descendantes

Application : analyse d'ensembles

Le projet VESTEC

- financé par la commission Européenne
- 9 partenaires académiques & industriels (dont Sorbonne Université)
- construire des méthodes, infrastructures et interfaces pour l'Urgent Decision Making
- simulations d'ensembles sur des clusters HPC, applications de visualisation
- 3 Use-Cases
 - 1. Forest Fire
 - 2. Mosquito-Borne Diseases
 - 3. Space Weather

Simuler un phénomène physique sans en connaître tous les paramètres

- 1. on lance un grand nombre de simulations avec différents paramètres
- 2. on compare les résultats des simulations avec l'évolution du phénomène physique
- 3. on jette les paramètres de simulation non pertinents
- 4. on répète jusqu'à ce qu'on aie identifié les scenarii les "plus probables"

VESTEC : Réduire le temps passé dans cette boucle

Cinema Database stocker, requêter des diagrammes de persistance Réduction de Dimension vue planaire Distance & Clustering de diagramme de persistance Calcul progressif de diagrammes de persistance

Réduction de Dimension

Matrice de distance

Nuage de points

Distance entre diagrammes de persistance

Jules VIDAL, Joseph BUDIN et Julien TIERNY. « Progressive Wasserstein Barycenters of Persistence Diagrams ». In : *IEEE Transactions on Visualization and Computer Graphics* (oct. 2019). Accepted to IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS 2019). URL : https://hal.archives-ouvertes.fr/hal-02179674

18/32

Clustering & Barycentres de diagrammes

Max KONTAK, Jules VIDAL et Julien TIERNY. « Statistical Parameter Selection for Clustering Persistence Diagrams ». In : *SuperComputing Workshop on UrgentHPC*. Denver, United States, nov. 2019. URL : https://hal.archives-ouvertes.fr/hal-02321869

Calcul progressif de diagrammes

Jules VIDAL, Pierre GUILLOU et Julien TIERNY. « A Progressive Approach to Scalar Field Topology ». In : IEEE Transactions on Visualization and Computer Graphics 27.6 (juin 2021), p. 2833-2850. ISSN : 2160-9306. DOI : 10.1109/tvcg.2021.3060500. URL : http://dx.doi.org/10.1109/TVCG.2021.3060500

Analyser les simulations d'ensemble

- 1. générer des diagrammes de persistance à chaque cycle de simulation
- 2. une fois les simulations terminées, on calcule une matrice de distance entre les diagrammes
- 3. on utilise la Réduction de Dimension (MDS) pour obtenir un nuage de points
- 4. on visualise et manipule le nuage de points avec ParaView
- 5. (Opt.) on cluster tout ou partie des diagrammes

VESTEC Use-Case 3 : Space Weather

- simulateur Particle-In-Cell développé à KTH
- · champ magnétique (vectoriel) dans la haute atmosphère
- phénomène à étudier : reconnexion magnétique
- un diagramme de persistance sur la magnitude du champ magnétique × 2500 cycles × 4 simulations

Quatre simulations, même cycle, différents paramètres

Manipulation & extraction des jeux de données

Après simulation & réduction des données

Couleur : cycle de simulation (de 0 à 2500) Couleur : paramètres de simulation (4 simulations)

Application : quadrangulation de surface

Quadrangulation de surface avec le complexe de Morse-Smale

À partir d'une surface fermée triangulée

À partir d'une surface fermée triangulée

 on utilise une fonction scalaire qui alterne minima et maxima sur la surface (fonction propre du laplacien de la triangulation)

À partir d'une surface fermée triangulée

 on utilise une fonction scalaire qui alterne minima et maxima sur la surface (fonction propre du laplacien de la triangulation)

2. complexe de Morse-Smale

À partir d'une surface fermée triangulée

- on utilise une fonction scalaire qui alterne minima et maxima sur la surface (fonction propre du laplacien de la triangulation)
- 2. complexe de Morse-Smale
- quadrangulation grossière autour des points selle (valence 4)

À partir d'une surface fermée triangulée

- on utilise une fonction scalaire qui alterne minima et maxima sur la surface (fonction propre du laplacien de la triangulation)
- 2. complexe de Morse-Smale
- quadrangulation grossière autour des points selle (valence 4)
- subdivision suivie d'itérations de projection/relaxation pour affiner la quadrangulation

Application : segmentation d'image

Segmentation d'image avec le complexe de Morse-Smale

À partir d'une image PNG

1. ParaView calcule le gradient

- 1. ParaView calcule le gradient
- 2. simplification topologique

- 1. ParaView calcule le gradient
- 2. simplification topologique
- 3. complexe de Morse-Smale
 - les minima sont les marqueurs

- 1. ParaView calcule le gradient
- 2. simplification topologique
- 3. complexe de Morse-Smale
 - les minima sont les marqueurs
 - les séparatrices ascendantes sont les frontières

- 1. ParaView calcule le gradient
- 2. simplification topologique
- 3. complexe de Morse-Smale
 - les minima sont les marqueurs
 - les séparatrices ascendantes sont les frontières
 - les zones d'influence des minima forment la segmentation

Conclusion

TTK (et l'analyse topologique de données en général) fournit des outils utiles à la compréhension de champs scalaires définis sur des maillages

- représentations réduites et préservant la topologie (diagrammes de persistance)
- analyses statistiques sur ces représentations réduites (distance, clustering, réduction de dimension)
- intégration à ParaView pour manipuler plus facilement les jeux de données
- applications variées : analyse d'ensembles, quadrangulation, segmentation d'image
- · segmentation du complexe de Morse-Smale \approx watershed?

D'autres abstractions topologiques

Arbres de contour diagrammes de persistance "augmentés" avec des relations de parentalité entre paires : *distance, clustering, barycentres*

le graphe de Reeb encode l'évolution de la connexité des ensembles de niveau : *clustering*

Points critiques de champs vectoriels : détection (en parallèle), lignes de champ, échantillonnage & reconstruction

Séparatrices Morse-Smale

Diagramme de persistance projeté

Join tree (arbre de contour) 30/32

This work is partially supported by the European Commission grant ERC-2019-COG "TORI" (ref. 863464, https://erc-tori.github.io).

Une introduction à l'analyse topologique de données avec TTK

Pierre Guillou Fontainebleau, 18 octobre 2021

CNRS & Sorbonne Université

ERC-2019-COG TORI (ref. 863464, https://erc-tori.github.io)